Skip to main content

Creating a custom ML model for integration into a Blender add-on

 Creating a custom ML model for integration into a Blender add-on is a comprehensive process. Below are detailed step-by-step instructions, starting from installation to deployment and integration.


1. Environment Setup

  • Install Required Tools
  • Python: Install Python (>=3.8). Recommended version: Python 3.9.
  • Libraries: Install key libraries:


pip install numpy pandas matplotlib torch torchvision tensorflow librosa phonemizer


Install Blender's Python Dependencies

Blender uses its own Python version. Add required libraries:

1. Locate Blender's Python path:


Example: C:\Program Files\Blender Foundation\Blender 3.x\3.x\python\bin

2. Open a terminal in this directory:

./python.exe -m ensurepip

./python.exe -m pip install numpy pandas torch librosa phonemizer

Install Jupyter Notebook (Optional)

For an interactive data preparation and training environment:

pip install notebook


2. Collect Data

Dataset Example

For lip-syncing, use datasets like:

LibriSpeech: Speech audio with transcripts.

TIMIT: Phoneme-labeled audio.

CMU Pronouncing Dictionary: Phoneme mapping for English words.

Download Dataset

Example: Download LibriSpeech:

wget http://www.openslr.org/resources/12/train-clean-100.tar.gz

tar -xvzf train-clean-100.tar.gz

Organize Dataset

Audio files (.wav or .mp3).

Phoneme labels (.txt or .json):

example.wav: ["A", "M", "E"]


3. Preprocess Data


Convert raw audio and labels into a numerical format.

Extract Features from Audio

Use librosa to extract MFCCs (Mel Frequency Cepstral Coefficients):


import librosa

import numpy as np


def extract_features(audio_path):

    audio, sr = librosa.load(audio_path, sr=16000) # Load audio at 16kHz

    mfccs = librosa.feature.mfcc(audio, sr=sr, n_mfcc=13) # Extract 13 MFCCs

    return np.mean(mfccs.T, axis=0)


features = extract_features("example.wav")

print(features)


Prepare Dataset


Organize features and labels:


import os

import json


def prepare_dataset(audio_dir, label_file):

    dataset = []

    with open(label_file, 'r') as file:

        labels = json.load(file)


    for audio_file, phonemes in labels.items():

        features = extract_features(os.path.join(audio_dir, audio_file))

        dataset.append((features, phonemes))

    

    return dataset


# Example usage

dataset = prepare_dataset("audio_files/", "labels.json")



---


4. Train Model


Use PyTorch for training:


import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import DataLoader, Dataset


class PhonemeDataset(Dataset):

    def __init__(self, dataset):

        self.dataset = dataset


    def __len__(self):

        return len(self.dataset)


    def __getitem__(self, idx):

        features, label = self.dataset[idx]

        return torch.tensor(features, dtype=torch.float32), torch.tensor(label, dtype=torch.long)


# Define model

class LipSyncModel(nn.Module):

    def __init__(self, input_size, output_size):

        super(LipSyncModel, self).__init__()

        self.fc1 = nn.Linear(input_size, 128)

        self.relu = nn.ReLU()

        self.fc2 = nn.Linear(128, output_size)


    def forward(self, x):

        x = self.relu(self.fc1(x))

        return self.fc2(x)


# Prepare data

train_dataset = PhonemeDataset(dataset)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)


# Train model

model = LipSyncModel(input_size=13, output_size=10) # Adjust output size to number of phonemes

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=0.001)


for epoch in range(10): # Number of epochs

    for features, labels in train_loader:

        optimizer.zero_grad()

        outputs = model(features)

        loss = criterion(outputs, labels)

        loss.backward()

        optimizer.step()


    print(f"Epoch {epoch+1}, Loss: {loss.item()}")



---


5. Evaluate Model


Evaluate the model on a test set:


test_loss = 0

correct = 0

total = 0


model.eval()

with torch.no_grad():

    for features, labels in test_loader:

        outputs = model(features)

        loss = criterion(outputs, labels)

        test_loss += loss.item()

        _, predicted = torch.max(outputs, 1)

        total += labels.size(0)

        correct += (predicted == labels).sum().item()


print(f"Test Loss: {test_loss / len(test_loader)}, Accuracy: {100 * correct / total}%")



---


6. Save the Model


Save the trained model:


torch.save(model.state_dict(), "lip_sync_model.pth")



---


7. Deploy Model in Blender Add-on


Load the Model


In your Blender add-on:


import torch

from your_model_file import LipSyncModel


model = LipSyncModel(input_size=13, output_size=10)

model.load_state_dict(torch.load("lip_sync_model.pth"))

model.eval()


Integrate with Blender


Add a function to analyze audio and generate phoneme timings:


def predict_phonemes(audio_path):

    features = extract_features(audio_path)

    features = torch.tensor(features, dtype=torch.float32).unsqueeze(0)

    with torch.no_grad():

        outputs = model(features)

        phoneme = torch.argmax(outputs, dim=1).item()

        return phoneme


Use the predicted phoneme data to keyframe Blender shape keys.



---


8. Automate Integration


Add UI in Blender for users to select audio, predict phonemes, and apply shape keys. Update your lip_sync_operator.py:


class LipSyncOperator(bpy.types.Operator):

    bl_idname = "object.lip_sync"

    bl_label = "Lip Sync with Audio"


    def execute(self, context):

        audio_path = context.scene.audio_file_path

        phonemes = predict_phonemes(audio_path)


        # Apply phoneme data as shape key animations in Blender

        for phoneme, timings in phonemes:

            # Add keyframes to shape keys

            pass


        return {'FINISHED'}



---


9. Test and Debug


Test the add-on with different audio inputs.


Debug and fine-tune phoneme detection and shape key animations.




---


10. Package and 

Distribute


Zip the add-on folder.


Share it on Blender Market, GitHub, or other platforms.



This workflow will help you create a fully functional custom ML model and integrate it seamlessly into Blender. Let me know if you'd like help with any specific part!


Comments

Popular posts from this blog

Best Antivirus Software For Pc 2024

Welcome to our comprehensive guide on the Best Antivirus Software for PCs in 2024. For those seeking dependable antivirus solutions, this blog will serve as your navigator in choosing the right software for your needs. WHAT IS ANTIVIRUS SOFTWARE? Antivirus software is a critical element in any cybersecurity arsenal, tasked with the detection, prevention, and removal of malware from computers and networks. It acts as a primary line of defense, safeguarding systems against the intrusion of harmful software. By securing computers and networks, antivirus software plays a pivotal role in halting the propagation of viruses and other malevolent code to further devices. BITDEFENDER ANTIVIRUS PLUS Bitdefender Antivirus Plus stands out as a top choice for comprehensive antivirus software due to its paid version offering robust protection. Pros: - Effective ransomware detection - Anti-Tracker enhances data privacy - Versatile password manager - Regular updates with subscription Cons: - Some packa...

What Is Bitcoin Halving?

Understanding Bitcoin Halving: A Comprehensive Guide Bitcoin halving is a significant event in the lifecycle of the Bitcoin network, where the reward for mining new blocks is reduced by half. This process occurs approximately every four years, or every 210,000 blocks, and is crucial for regulating the supply of new Bitcoins in circulation. It ensures that the total number of Bitcoins never exceeds 21 million, maintaining scarcity and, potentially, the value of the cryptocurrency. How Bitcoin Halving Works The Bitcoin blockchain functions as a decentralized ledger, recording all transactions across a distributed network of computers, known as nodes. When a transaction is verified, it is added to a block and linked to the existing chain of blocks, known as the blockchain. This system relies on cryptographic protocols to ensure security and transparency. At the heart of this process is mining. Miners use powerful computers to solve complex mathemati...